Fourier-Laguerre transform, convolution and wavelets on the ball
نویسندگان
چکیده
We review the Fourier-Laguerre transform, an alternative harmonic analysis on the three-dimensional ball to the usual Fourier-Bessel transform. The Fourier-Laguerre transform exhibits an exact quadrature rule and thus leads to a sampling theorem on the ball. We study the definition of convolution on the ball in this context, showing explicitly how translation on the radial line may be viewed as convolution with a shifted Dirac delta function. We review the exact Fourier-Laguerre wavelet transform on the ball, coined flaglets, and show that flaglets constitute a tight frame.
منابع مشابه
Flaglets: Exact Wavelets on the Ball
We summarise the construction of exact axisymmetric scalediscretised wavelets on the sphere and on the ball. The wavelet transform on the ball relies on a novel 3D harmonic transform called the Fourier-Laguerre transform which combines the spherical harmonic transform with damped Laguerre polynomials on the radial half-line. The resulting wavelets, called flaglets, extract scale-dependent, spat...
متن کاملThe Heisenberg Group Fourier Transform
1. Fourier transform on Rn 1 2. Fourier analysis on the Heisenberg group 2 2.1. Representations of the Heisenberg group 2 2.2. Group Fourier transform 3 2.3. Convolution and twisted convolution 5 3. Hermite and Laguerre functions 6 3.1. Hermite polynomials 6 3.2. Laguerre polynomials 9 3.3. Special Hermite functions 9 4. Group Fourier transform of radial functions on the Heisenberg group 12 Ref...
متن کاملFlaglets for studying the large-scale structure of the Universe
Pressing questions in cosmology such as the nature of dark matter and dark energy can be addressed using large galaxy surveys, which measure the positions, properties and redshifts of galaxies in order to map the large-scale structure of the Universe. We review the Fourier-Laguerre transform, a novel transform in 3D spherical coordinates which is based on spherical harmonics combined with dampe...
متن کاملBest Approximations for the Laguerre-type Weierstrass Transform on [0,∞[×r
For α = n− 1, n ∈ N\{0}, the operator D2 is the radial part of the sub-Laplacian on the Heisenberg groupHn (see [2, 4]). These operators have gained considerable interest in various fields of mathematics (see [1, 4]). They give rise to generalizations of many two-variable analytic structures like the Laguerre-Fourier transform L, the Laguerre-convolution product, the dispersion and the Gaussian...
متن کامل3D weak lensing with spin wavelets on the ball
We construct the spin flaglet transform, a wavelet transform to analyse spin signals in three dimensions. Spin flaglets can probe signal content localised simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analysing of cosmological observations such as the weak gravitatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1307.1307 شماره
صفحات -
تاریخ انتشار 2013